
Journal of Applied Mechanics and Technical Physics, Vol. 36, No. 3, 1995 

N U M E R I C A L  A N A L Y S I S  OF T H E  D I S T R I B U T I O N  OF C U R R E N T S  IN A P L A S M A  J E T ,  

W I T H  T H E  H A L L  E F F E C T  T A K E N  I N T O  A C C O U N T  

V .  I. E r m i l i n  a n d  V .  K.  K o l e s n i k o v  UDC 533.95 

Numerical analysis of the distribution of electric currents in a plasma medium, with the Hall effect taken 
into account, has been conducted in many works (see [1-3], for example) dedicated to studying intrachannel 
flows in various MHD devices. 

The aim of the present paper is to study the peculiarities of the current distribution in stationary 
underexpanded plasma jets flowing into a neutral medium, with the magnetic field applied in such a manner 
as to be directed along the jet axis. This topic has been virtually neglected in the literature although its 
study would be of interest in designing and using certain types of MHD engines and accelerators. Although 
the problem seems to be somewhat simpler than that presented in [1-3] because of the absense of electrodes 
in the computational domain, it nevertheless has its own special features which are due to the fact that it has 
a free boundary and that the jet is not limited down the flow. 

S y s t e m  of  E q u a t i o n s  and  a M e t h o d  of Solving It .  We consider a stationary, axisymmetric jet 
of completely ionized plasma that flows into a nonconducting medium with a finite but fairly low pressure. 
It is assumed that the conductivity of the plasma is finite and is a function of electron temperature. The 
magnetic field applied is directed along the jet axis. To describe the jet, we use the magnetohydrodynamic 
approximation. Note that when no magnetic field is applied it is incorrect to use the continuous medium 
approximation for the jets flowing into a highly rarefied space, since at a distance from the source the mean 
free path of particles becomes comparable with the characteristic size of the jet. However, often the case is that 
the magnetic field strongly binds charged particles, and this presents an opportunity to obtain qualitatively 
correct results by making use of this approximation [4, 5]. 

Our mathematical model will be based upon the system of equations proposed in [6, 7] that has been 
derived from the general hydrodynamics equations of a plasma [8] under the assumption that the ionic gas is 
nondissipative and the energy transfer from electrons to ions is small because of the high mass ratio and low 
concentration of plasma. A model relation for electrons is used instead of the energy equation. Note that an 
adequate description of a distribution Te in the jet is a complicated task and in order to solve it the capacity 
of the computers must be increased, for one needs to take into account not only heat conduction but also 
kinetic and emission processes whose influence may be considerable. However, for the purpose of quaiitative 
analysis, we use the model relation (5), with our procedures based on [9, 10]. Note that using another model 
or an empirical relation instead of (5) does not alter the qualitative picture of the interaction of the plasma 
jet with the magnetic field. 

If one takes as the main dimensional quantities the radius Ra of the jet initial cross section, the velocity 
Va, and the density pa of the plasma on the axis in the initial cross section, then the system of equations 
describing the behavior of magnetic fields and electric currents, with the Hall effect taken into account, may 
be written in the following dimensionless form: 

div (pV) = O; (1j 

p ( V V ) V +  V(pi +Pe) = [jH]; (2, 
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Pi = const pV'; (3) 

Pe = pTe; (4) 

Te = coast p-r~-l; (5) 

cr =cons t  T 3/2; (6) 

j = a (E + IV HI) - ~ ([j H] - Vpe);  (7) 

rot E = 0; (8) 

divj = 0; (9) 

d ivH = 0; (10) 

rot H = 4 ~rj. (11) 

Here, pi and Pe are the ionic and electron pressure, respectively; 7 / i s  the adiabatic exponent for the 
ionic gas; 7e is a parameter of the model relation for the electrons; # = f lcr/p is the mobility of electrons; #H 
is the Hall vector; fl = c s m i / ( e R a v / ~ a )  = x/ ' -~t3 (fl is the exchange parameter [11]); V = (V~, V~, V~) is the 
plasma velocity vector; H- -H~ i is the sum of the applied and induced magnetic fields; H ~ = (0, 0, H~ the 
rest of the notation is conventional. The problem is considered in the cylindrical coordinate system (r, % z). 

System (1)-(11) comprises equations of different types. Electromagnetic equations (8)-(11) are of 
elliptic type, while the type of the plasma dynamics equations (1), (2) depends on the mode of flow; when 
the flow is supersonic, they are of hyperbolic type. Thus, it makes sense to split the original problem into two 
subproblems, hydrodynamic and electromanetic, and then iterate them together until a consistent solution is 
obtained. 

Consider the group of hydrodynamic equations (1), 
difference between these equations and similar ones from 
appearance of the azimuthal projection of the equation of 
the axis of symmetry caused by the ponderomotive force. 

(2), with relations (3)-(5) taken into account. The 
[6, 7] lies in the presence of the Coriolis force and 
motion that reflects the rotation of the jet around 

Note that  in traditional gas dynamics a system of equations similar to (1)-(5) is used for describing 
flows without shock waves. However, taking into consideration the relatively large degree of incomputability, 
the relatively large velocity of the outflow, the small slopes of the jet, and the fact that  the magnetic field 
applied to the jet is of "viscous" kind [6], one can obtain qualitatively true results for jets with shock waves 
of low intensity. 

To solve the group of hydrodynamic equations, we use the finite-difference march method with second 
order-of-magnitude accuracy in accordance with [6, 7]. Compared with [6, 7], there are additional boundary 
conditions. We let V~ = 0 on the axis of the jet. To determine the velocity components on the free boundary of 
the jet, we add the azimuthal projection of the equation of motion. Written in the differential form, Bernoulli's 
equation along the boundary current line is 

o 2 v )/21 sinO ~-~[(V~ + V 2 + - ( j ~ H z  - j z H ~ ) / p  - cos 0 ( j , .H~ - j ~ H r ) / p  = O, 

where O/Ol is the derivative along the boundary current line; 0 is the angle between the O z  axis and the 
tangent to the boundary current line at a given point. 

Consider the group of electromagnetic equations (8)-(11), with the generalized Ohm's law taken into 
account. From Eqs. (7)-(9) one determines the vector of density of electric currents that  flow in the jet 
under given values of the magnetic field and hydrodynamic parameters of the plasma. Given the values of the 
electric currents flowing in the jet, one determines the magnetic field from Eqs. (10) and (11). In this group 
of equations, we can also recognize two smaller problems - -  calculation of the currents and calculation of the 
induced magnetic field. 

Consider the task of calculating the currents. In view of the axial symmetry, the process of solving 
Eqs. (7)-(9) can be reduced to solving one elliptic equation with mixed partial derivatives, from which jT and 
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jz are determined, and to calculating Jr from the projection (7) onto the c 2 axis of the cylindrical coordinate 
system. The latter relation is of the form 

j~ = a (VzHr - VrHz) - # (jzHr - jrHz). 

Determination of jr  and jz is based on the fact that the vector field j is solenoidal. We introduce a 
current function ~b, subject to the following conditions: 

1 0r 
jr . . . . .  (12) r 0z' 

1 0r 
j~ - ( i3)  r Or" 

Comparing (12) and (13) with (11), we note that r = rHi~/(4r). 
Using relations (3) and (5), we write (7) as 

E ' = [ V H ] - j / a - f l / p [ j  H],  

where 

E' = V (~e + ~ ce %/(Te  - 1) pre-1); 

qD~ is the electrostatic potential; ce is a constant in Eq. (5). 
Applying the rot operation to the above relation and noting that rot E I = 0 and E$ = 0, one obtains 

the following equation from which the current function can be determined: 

L ( L zD it. 12 ~__~r ~3 #a~or ~(0.0_.0 1'(21Lr # H ~ - - - ~ r  (14) oqz kKl l  oz q- q- r(:r -~r ] -t- Or kI(22 OrC q- Oz rcr 

Here, 

K l 1 =  (l  + (#Hz)2)/(rcr); 

i (  12 = 1(  21 = ~ 2 H r H z / ( r a ) ;  

K 22 = (1 + (vHr)2)/(r~); 

Q1 = ~--~(V~H~, - V~,Yz) + #gz(V:Hr - V~Hz); 

Q2 = ~ ( Y ~ g ~  - v~,gr) + v g r ( Y : g r  - V, Hz). 

Consider the boundary conditions for Eq. (14). Since the plasma jet is flowing into a nonconducting 
medium, the normal component of the electric current density vector equals zero at the free boundary of the 
jet. Therefore, the function r is constant there. Generally, the jet is unbounded down the flow. For the sake 
of definiteness, we limit the jet by some zk. Let a = 0 when z > zk. Consequently, ~b is constant there, too. 
When there is no current flow through the initial cross section of the jet (there is no emission from the plasma 
source), r is also constant and equal to zero. On the axis, r = 0 by virtue of symmetry. 

Thus, we have a boundary value problem of the first kind for the nonlinear elliptic equation (14) with 
mixed partial derivatives and with an operator that is not self-adjoint. Note, however, that terms due to which 
the operator is not self-adjoint have coefficients of the order #H, while the other terms have coefficients of 
the order (#H) 2 and 1. In the case where the azimuthal component of the Hall vector is not predominant, 
the terms with the coefficient #H will not exert a far-reaching influence on the solution, regardless of whether 
#H/> 1 or /zH ~< 1. Hence, they may be rearranged to the right-hand side of the equation, assuming they are 
known from the previous global iteration. 

To obtain a numerical solution, it is convenient to map the physical region in coordinates (r, z) onto a 
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rectangle or square (~, r/). We introduce two nets in the calculation region, the main 

$1 ={r]i l  = ilh~, ~i2 = i2h,, O <~ il <<. N, O ~ i2 ~ M} 

and the auxiliary 

$2 = { rhl-1/2 ='(il -1/2)h~, ~i2-1/2 = (i2-1/2)h~, } 
1 ~</2 ~<M, l<<.il<~N 

half-step shifted with respect to S 1. Based on the principles of [3, 12], an approximation of transformed 
equation (14) (with the above mapping taken into account) will yield a system of linear equations that can 
be effectively solved by using a locally optimal modification of the adjoint residual method presented in [13]. 

The components H / and Hz i of the magnetic field induced by the azimuthal current can be conveniently 
calculated on the basis of the potential theory in accordance with [7]. 

Different nets have been used in solving the subproblems. In calculating the hydrodynamic parameters 
of the plasma, a net with 101 points along the radial direction has been used. The components of the electric 
current density and the components of the induced magnetic field have been calculated on a net with 21 
points along the radial direction and 101 points along the lengthwise direction. Interpolation has been used 
to switch from one net to the other. 

Resu l t s  of  N u m e r i c a l  Analyses .  Here we examine some characteristic results obtained from 
modeling a jet of argon plasma under conditions in which the induced magnetic field can be neglected. 
Let the radius Ra of the initial cross section of the jet be equal to 10 cm. The values of ionic and electron 
temperature, concentration, and velocity on the axis of the jet in the initial cross section are: Ti = Te = 0.5 eV, 
na = 1014 cm -3, and Va = 6- 10 s cm/sec. Parameters 7 / =  1.67 and 7e = 1. First we note that varying the 
parameters 7i and %(1 < 7e ~< 7/) revealed no principal differences in the structure of the electric current 
distribution in the jet. 

Under the given conditions, the degree of plasma ionization is rather small (~  1.5- 10-3). But owing to 
the Ramsauer effect in the case of the argon plasma, one may notice that the collision frequency of charged 
particles with one another considerably dominates over that of charged particles with atoms. Using [14] for 
estimating the cross section of electron-atom collisions (Qea ~ 0.7.10 -16 cm 2) gives Vei/Vea ~. 6.4. Therefore, 
in this case, the transfer of completely ionized plasma and electric charge transfer are of the same character. 

Parameter profiles in the initial cross section of the jet have been determined from the model relations 

F = e x p ( C r / 1 ) ,  r e [0, 1], 11 = 1, 2 , 3 , . . . ,  

Vr=constVzsin  , 1 2 = 1 , 2 , 3 , . . . ,  

where F = [pVz]T; C = [cl, c2]T; Cl and c2 are constants (ca < 0 and c2 > 0). 
Consider a jet with ratio of the density on the axis in the initial cross section to the density of 

the external medium equal to 10. Varying the absolute value of the applied magnetic field strength vector 
within 25-125 Oe (while the initial values Of the hydrodynamic parameters of the jet do not change), one 
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obtains, in the case of supersonic flow, jets of various forms [6], including barrel-like ones. Relying on a 
posteriori estimates, we can point out that Re,n < 1 in this situation, and the influence of the Hall effect on 
hydrodynamic parameters of plasma is insignificant. The only other thing to be mentioned here is that the 
jet starts rotating but its azimuthal speed is much lesser than its translational speed. 

Consider a distribution of electric currents (components jr and jz of the current density vector) that 
arise in jets of different forms, with the Hall effect taken into account. Figures 1-3 show current lines when 
H ~ = 125, 75, and 25 Oe, respectively. The current lines were plotted so that equal parts of the total current 
flow between adjacent lines. This is so for each family of loops. The jet boundary is also a current line. The 
arrows show the direction of the current. The values of the Hall vector components in the rarefied part of the 
jet did not exceed 4. 

Figure 1 shows that in this situation the electric current flows along the family of closed loops in 
one direction in the field of the jet. The current that flows between the adjacent lines is 1/5 of the total 
current. The maximum currents (jr, jz) flow near the jet boundary (where the current lines are condensed) in 
a region located at a certain distance from the initial cross section of the jet. Here, the rarefied part of the jet 
expands but the gradients of the hydrodynamic parameters are still sufficiently large. So are the azimuthal 
currents. The electric currents are small in the jet core and down the flow, since the parameters of the flow 
are distributed more uniformly. 

When the jet has a barrel-like structure (rarefaction and condensation zones alternate), the distribution 
of jr  and jz is qualitatively different (see Figs. 2 and 3). There appear regions in which the electric current 
flows along different families of loops in different directions. The families of these loops are separated by a line 
on which H~ = 0 and on each side of the line this function has opposite signs. Zero surfaces do not coincide 
with the boundaries of the "barrels" but are shifted with respect to the latter. By analogy with [14], one can 
say that the so-called neutral (zero) surfaces appear in the field of the jet. 

Analysis of Figs. 1-3 shows that the appearance and location of zero lines are connected with the 
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appearance and location of the points of inflection on the curves that determine the jet boundary, i.e., one 
may conclude that the occurrence of zero lines depends on whether or not there is a change of sign of the flow 
acceleration in the radial direction. This conclusion is well illustrated by the appearance of a zero line near 
the jet initial cross section in Fig. 3. That the zero line has appeared here, is connected with the fact that the 
velocity vector has been artificially perturbed at the initial cross section, which ensures accelerating the flow 
in the radial direction (Fig. 4 shows the slope of the velocity vector along the jet boundary when H ~ = 25 
and 75 Oe, represented by lines 1 and 2, respectively). 

Note also that when there is a barrel-like structure, a greater current flows in the first "barrel." 
If we consider a greater ratio of the jet density on the axis in the initial cross section to the density of the 

surrounding medium Pa/Poo >t 100 and a smaller absolute value of the applied magnetic field strength vector 
(H ~ ~< 10 Oe), taking care that the MHD interaction parameter on the jet boundary stays approximately 
the same, calculations show that,  from the qus standpoint, the currents are distributed as in the case 
shown in Fig. 1. But because of the higher degree of plasma rarefaction, the analogous current lines are closer 
to the axis of symmetry and more extended along the z axis. 
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